
Data Preparation
Data Preparation

Every data science endeavor begins with 
source data that will hopefully provide insights 
on a question (business, technical, scientific, 
etc). 

Each data set will present with its own 
characteristic data quality issues that must be 
identified, characterized, and (if problematic) 
corrected or mitigated. 

The objective of data preparation is to yield a 
data set that can be effectively analyzed and, 
if desired, used as a training resource to make 
predictions with machine learning methods.



Background of this project
This work was originally performed to create a submission to the MIT Applied Data Science 
Program Mega Hackathon for Wilson Analytics in 2022 Winter.

Problem Statement
One of the leading financial institutions in India wants to leverage Machine Learning 
techniques to determine the client’s loan repayment abilities and take proactive steps to 
reduce the magnitude of exposure to default

Goal
The goal of the problem is to predict whether a client will default on the loan payment or not, 
given the recent data of all the loan transactions. This can help the institution to distinguish 
future applicants who might default. For each ID in the Test Dataset, you must predict the 
“Default” level.



Data Cleaning Workflow

● Data Collection: Collect the data from various sources like databases, spreadsheets, web scraping, or APIs. This step may 
also include combining data from multiple sources.

● Data Exploration and Preprocessing: Explore the data to understand its structure and characteristics. Preprocess the data 
by handling missing values, identifying outliers, and transforming variables.

● Data Cleaning: Clean the data by removing duplicate entries, correcting typos, standardizing variables, and dealing with 
inconsistencies in the data.

● Data Transformation: Transform the data by normalizing, scaling, or encoding variables as required.

● Feature Engineering: Engineer new features that might improve model performance. This might include creating new 
variables based on existing variables, aggregating data, or extracting features from text or images.

● Data Sampling: Sample the data to ensure that the data is representative of the population it comes from.

● Data Splitting: Split the data into training, validation, and testing sets for model building and evaluation.

● Data Visualization: Visualize the data to understand patterns, correlations, and outliers in the data.

● Iterative Refinement: Iterate through the previous steps to refine the data as needed. This process involves going back and 
forth between steps until the data is ready for modeling.

● Data Reporting: Report on the cleaning process, including any changes made to the data, and document the final cleaned 
dataset.



Tech Stack

A representative tech stack for data cleaning might include the following tools:

● Data Wrangling Libraries: Libraries like pandas in Python or data.table in R are commonly used to manipulate and 
transform data, which is a key step in the data cleaning process.

● Data Visualization Libraries: Libraries like matplotlib or ggplot2 are used for data visualization, which can help 
identify outliers, inconsistencies, and other data quality issues.

● Text Processing Libraries: Text data is often a major source of data cleaning challenges, so libraries like NLTK or 
spaCy can be used for cleaning, preprocessing, and feature engineering on textual data.

● Data Quality Tools: Data quality tools like OpenRefine or Trifacta are used for identifying and correcting errors in 
data, handling missing data, and dealing with inconsistencies.

● Version Control Tools: Version control tools like Git are used to track changes made to the data cleaning process 
and to collaborate with other team members.

● Cloud Storage and Computing: Cloud platforms like Amazon Web Services, Microsoft Azure, or Google Cloud 
Platform can be used for storing large datasets and for accessing computing resources needed to process data at 
scale.

● Data Cleaning Frameworks: Some data cleaning frameworks like Dora or Great Expectations can automate some 
parts of the data cleaning process and ensure that the data is cleaned and prepared for analysis according to the best 
practices and guidelines.



Tech Stack specific to this project

Python
collection of libraries and tools for tasks such as data cleaning, visualization, statistical analysis, and machine learning

numpy
Provides efficient array-based computing capabilities used to handle missing values, reshape data, and transform variables

pandas
Provides functions for handling missing data, merging and reshaping datasets, and filtering and transforming data

matplotlib
Used to create customizable and high-quality plots and visualizations to aid in identifying patterns and trends in the data 

pyplot
Matplotlib module used to create interactive visualizations and facilitate data exploration

seaborn
Visualization capabilities that can help identify outliers and other data quality issues

sklearn(scikit-learn)
Supports various data preprocessing techniques, such as handling missing values and scaling features. 

SciPy
Supports various data preprocessing techniques, such as handling missing values and scaling features. 

parquet
A columnar storage format, compatible with a wide range of data processing tools, including Hadoop, Spark, and SQL-based 
databases)



Data Quality Assessment



Data Exploration

This step involves performing basic statistical analysis on the data to gain an understanding of its distribution, 
central tendency, and variability. This step also involves creating visualizations, such as histograms, scatter 
plots, and box plots, to visualize the data.

Descriptive statistics
used to summarize the main characteristics of a dataset. This includes measures of central tendency 
such as mean, median, and mode, as well as measures of variability such as standard deviation, 
variance, and range.

Visualization
effective way to explore data and gain insights. Some commonly used visualizations include histograms, 
scatter plots, box plots, and heatmaps. Histograms are used to visualize the distribution of a single 
variable, scatter plots are used to visualize the relationship between two variables, box plots are used to 
visualize the distribution of a variable by showing quartiles and outliers, and heatmaps are used to 
visualize the relationship between multiple variables.

Outlier detection
Outliers are data points that are significantly different from other data points in the dataset. Outliers can 
have a significant impact on statistical analysis and modeling. Therefore, it is important to detect and 
handle outliers appropriately.



Feature Engineering
This step involves creating new features or transforming existing features to better represent the underlying data. 
This step can involve techniques such as normalization, standardization, and encoding categorical variables. 
Feature engineering can help to improve the performance of machine learning models and make the data more 
interpretable.

Normalization
a technique that rescales the values of a feature to have a range between 0 and 1. This technique is useful 
when the range of values for a feature is large and varies widely.

Standardization
a technique that rescales the values of a feature to have a mean of 0 and a standard deviation of 1. This 
technique is useful when the range of values for a feature is not known in advance and varies widely.

Encoding categorical variables 
Categorical variables are variables that take on a finite number of values. Encoding categorical variables is a 
technique that converts categorical variables into numerical variables. There are several methods for 
encoding categorical variables, including one-hot encoding, label encoding, and frequency encoding.

Feature scaling
a technique that rescales the values of a feature to have a specific range or distribution. This technique is 
useful when the values of a feature have different scales and units.



Exploration

Data Exploration: This step involves performing basic statistical analysis on the 
data to gain an understanding of its distribution, central tendency, and variability. 
This step also involves creating visualizations, such as histograms, scatter plots, 
and box plots, to visualize the data.

Feature Engineering: This step involves creating new features or transforming 
existing features to better represent the underlying data. This step can involve 
techniques such as normalization, standardization, and encoding categorical 
variables.



Data Dictionary

To effectively manage data in data science, a Data Dictionary is crucial. 

It captures essential parameters of data, regardless of the source (e.g., 
consumer surveys, sensors, web scraping, etc.). This includes the label, 
attributes, and description of each row and column in a table.

Our project includes a Data Dictionary, which is a table that outlines these 
parameters and provides guidance on encoding categorical data. 

See the following slide for the data dictionary as supplied at the beginning of 
the project. It is contains many less relevant data and some that are 
confusing.



Da
ta

 D
ic

tio
na

ry



Id
en

tif
y 

da
ta

 is
su

es
train_data

Source data CSV files are ingested into dataframes (Pandas) and then displayed to 
provide an initial analysis of data quality issues.

Column label 
"Jobs_Reatained" is 
misspelled

Several column labels have 
inappropriate extra spaces 
that need to be removed 
(blue arrows)

Date data appears in two 
different formats

Some of the monetary 
data contains both 
numerical and string data

Target Variable
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Check for dataframe shape 

Training Data
● Rows = 105,000
● Columns = 26

Testing Data
● Rows = 45,000
● Columns = 25

○ As expected, the testing data set 
lacks the target variable column



Observations on Initial Data

These columns will be dropped:
● 'Jobs_Retained'
● 'Jobs_Created '
● 'Count_Employees'
● 'ID'
● 'Date_Of_Disbursement'
● 'Commitment_Date'
● 'Code_Franchise'
● 'Year_Of_Commitment'
● 'Classification_Code'
● 'Borrower_Name'
● 'Borrower_City'
● 'Gross_Amount_Balance'
● 'Revolving_Credit_Line'
● 'State_Of_Bank'
● 'Borrower_State'
● 'Name_Of_Bank'
● 'Primary_Loan_Digit'
● ‘Loan_Approved_Gross’

Target Variable = 'Default' (Did not default = 0, 
Defaulted = 1)

Categorical variables that need to be encoded:

● 'Business' (Existing or New)
● 'Low_Documentation_Loan' (Low or Not)
● 'Demography' (Undecided, Urban or Rural)



Data Pre-Processing



Renaming misspelled and poorly formatted column names

columns = {'ChargedOff_Amount ': 'ChargedOff_Amount', 'Gross_Amount_Disbursed  ': 
'Gross_Amount_Disbursed', 'Guaranteed_Approved _Loan': 'Guaranteed_Approved_Loan', 
'Jobs_Reatained': 'Jobs_Retained', 'Borrower_Name ': 'Borrower_Name', 'Classification_Code 
': 'Classification_Code', 'Year_Of_Commitment ': 'Year_Of_Commitment'}

train_data = train_data.rename(columns, axis = 1)
test_data = test_data.rename(columns, axis = 1)

Note:
● Many of these renamed columns will be dropped in the next step
● I have included this here as a demonstration of one important aspect of the data cleaning 

workflow



Dropping columns

cols_to_drop = ['Jobs_Retained', 'Jobs_Created ', 'Count_Employees', 'ID', 'Date_Of_Disbursement', 
'Commitment_Date', 'Code_Franchise', 'Year_Of_Commitment', 'Classification_Code', 
'Borrower_Name', 'Borrower_City', 'Gross_Amount_Balance', 'Revolving_Credit_Line', 
'State_Of_Bank', 'Borrower_State', 'Name_Of_Bank', 'Primary_Loan_Digit', 'Loan_Approved_Gross']

train_data.drop(columns=cols_to_drop, inplace=True)
test_data.drop(columns=cols_to_drop, inplace=True)

After dropping these columns

train_data.shape = 8 columns and 105,000 rows
test_data.shape = 7 columns and 45,000 rows



New Data Dictionary, after pre-processing

Features Description

Business Type of business. ENCODE: Existing = 0, New = 1

Guaranteed_Approved_Loan The guaranteed amount of loan that has been approved by the financial company.

Low_Documentation_Loan Whether the loan documentation is low or not. ENCODE: No = 0, Yes = 1

Demography Whether the borrower lives in an urban or rural locality? ENCODE: Undefined = 0, Urban = 1, Rural = 2

ChargedOff_Amount The amount that has been charged off (loss to financial company due to default)

Gross_Amount_Disbursed The total loan amount that has been disbursed.

Loan_Term The total loan term in months.

Default (TARGET VARIABLE) Did not default = 0, Defaulted = 1



Fields in the red 
boxes SHOULD be 
numeric but are 
being detected as 
‘object’ (string)

Checking for data types

train_data test_data



All of the following columns have 
entries that relate to monetary 
amounts:

● 'Guaranteed_Approved_Loan'
● 'Gross_Amount_Balance'
● 'Gross_Amount_Disbursed'
● 'ChargedOff_Amount'

These monetary columns are 
detected as an ‘object’ because, in 
addition to the numerical data, a 
prefix indicating that these numbers 
are in Rupees ('Rs.') is present

Correcting Monetary Data Issues



Various monetary columns, listing rupee amounts, are detected as ‘object’ due to 
the string ‘Rs.” being included.

train_data test_data



Code to address the data heterogeneity

def replace_and_cast_to_int(data, columns, replace_dict):
   for column in columns:
       data[column] = data[column].replace(replace_dict, regex=True).astype(float)
       data[column] = data[column].apply(lambda x: int(round(x)))

columns = ['Guaranteed_Approved_Loan', 'Gross_Amount_Disbursed', 'ChargedOff_Amount']
replace_dict = {'Rs.': '', ',': ''}

replace_and_cast_to_int(train_data, columns, replace_dict)
replace_and_cast_to_int(test_data, columns, replace_dict)



Corrected monetary columns

train_data test_data



Check data type by using this code:

train_data.dtypes
test_data.dtypes

Once the ‘Rs.’ string was deleted 
from the monetary columns the 
data type has changed to the 
correct type (from ‘object’ to 
‘int64’)

train_data test_data

Check data type

train_data test_data



Check for missing data



train_data test_data

Missing Data



Missing Values in TRAINING data:
● 'Business' = 0.014 %
● 'Low_Documentation_Loan' = 0.35 %

Missing Values in TESTING data:
● 'Business' = 0.013 %
● 'Low_Documentation_Loan' = 0.30 %

Observations



Examine unique values



train_data test_data

Unique Values



Analysis of unique values reveals that in the ‘Demography’ column there are substantial 
numbers of entries that are “Undefined”:

● ‘train_data’
○ Of the 105,000 rows, 35,099 are undefined.
○ That is 33% or a 1/3 of the data.

● ‘test_data’
○ Of the 45,000 rows, 15,020 are undefined.
○ That is 33% or a 1/3 of the data.

Dropping all rows that have "Undecided" would cause a 33% reduction in the entire dataset and is 
not desirable

For this reason, the ‘Demography’ column is dropped

Observations



Encode Categorical Data



Encoding of Categorical Values

As shown at the beginning of this project, certain columns must be translated from a text string (eg, 
'Yes', 'No', etc) into a numeric quantity to make it accessible to further statistical analysis and 
inclusion in prediction models.

A method called Nominal Label Encoding will be used to prepare the categorical data for machine 
learning methods

In Nominal Label Encoding, a specific value is assigned to a specific string found in a specific 
column of data. This method uses dictionaries to map the assigned numeric value in the place of 
the specified string value.

This method can be considered a simple solution as it does NOT create new columns as is the case 
of One Hot Encoding.

As has been the case throughout this project, all data preparation done on the training data set is 
also done on the testing data set.



Encoding of Categorical Values

'Business'
● 'Existing' = 0
● 'New' = 1

'Low_Documentation_Loan'
● 'No' = 0
● 'Yes' = 1
● All 173 of the 'O' entries remain '0' (UNCHANGED DURING ENCODING)
● All 95 of the 'S' entries are assigned '0'
● All 60 of the 'A' entries are assigned '0'
● All 89 of the 'C' entries are assigned '1'
● All 6 of the 'R' entries are assigned '1'



Code

def encode_column(data, column, encoding_dict):
   return data[column].map(encoding_dict)

# Encoding dictionaries
business_encoding_dict = {'Existing': 0, 'New': 1}
low_encoding_dict = {'No': 0, 'Yes': 1, 'S': 0, 'A': 0, 'C': 1, 'R': 1}

# Encode columns in train_data
train_data['Business'] = encode_column(train_data, 'Business', business_encoding_dict)
train_data['Low_Documentation_Loan'] = encode_column(train_data, 'Low_Documentation_Loan', low_encoding_dict)

# Encode columns in test_data
test_data['Business'] = encode_column(test_data, 'Business', business_encoding_dict)
test_data['Low_Documentation_Loan'] = encode_column(test_data, 'Low_Documentation_Loan', low_encoding_dict)



After encoding

train_data

test_data



After encoding, nulls still exist

After encoding



def fill_na(df, columns):
   for col in columns:
       df[col] = df[col].fillna(0)
   return df

columns_to_fill = ['Business', 'Low_Documentation_Loan']
train_data = fill_na(train_data, columns_to_fill)

columns_to_fill = ['Business', 'Low_Documentation_Loan']
test_data = fill_na(test_data, columns_to_fill)

Removing the nulls



Revised Data Dictionary

Final DataFrame shapes

train_data
Rows = 105,000
Columns = 7

test_data
Rows = 45,000
Columns = 6



Outliers



Addressing Outliers

Rationale for normalization to address outliers

● Some machine learning methods assume normal distributions in the input data

● Data with significant variance/outliers may compromise ML performance

● Outliers and variance are often important aspects of data so they should not be 
simply dropped

● I will be comparing the impact of the use of no normalization, winsorization, and 
log transform on data distribution and then, later, on ML performance in another 
project.



Addressing Outliers - Winsorization

Rationale for using Winsorization to address outliers

Winsorization works by identifying extreme values, which are typically defined as values that are a certain 
number of standard deviations away from the mean of the dataset. Once the extreme values have been 
identified, they are replaced with values that are less extreme but still within a certain range of the original 
values.

Two types:

● Minimum Winsorization
○ extreme values that are below a certain threshold are replaced with the value of the threshold

● Maximum Winsorization
○ the extreme values that are above a certain threshold are replaced with the value of the 

threshold.



Addressing Outliers - Winsorization

With respect to the code used to winsorize these data sets:

● The set limits=[0.2, 0.2] applies the same 20% trimming limit to both tails of 
the distribution, which means that the function will replace the 10% lowest 
values and 10% highest values with the adjacent values.

● There is no distinction between minimum and maximum limits. The limits are 
symmetrical, so the same fraction of values will be trimmed from both ends of 
the distribution.



Winsorization Code

# Define the columns to Winsorize

columns_to_winsorize = ['Guaranteed_Approved_Loan', 'ChargedOff_Amount', 'Gross_Amount_Disbursed']

# Create a new DataFrame for the Winsorized data

train_data_win = pd.DataFrame()

# Apply Winsorization to the selected columns and store the results in the new DataFrame

for column in columns_to_winsorize:
   train_data_win[column + '_win'] = winsorize(train_data[column], limits=[0.2, 0.2])

# Add the remaining columns from the original DataFrame to the new DataFrame

train_data_win = pd.concat([train_data_win, train_data.drop(columns_to_winsorize, axis=1)], axis=1)



Addressing Outliers - Log Transform

Rationale for using Log Transformation to address outliers

● Some machine learning methods assume normal distributions in the input data

● Data with significant variance/outliers may compromise ML performance

● Outliers and variance are often important aspects of data so they should not be 
simply dropped

● Log Transformation brings data into a distribution more effectively 
approximating a standard curve

● It preserves relative changes and magnitude of change



Log transform code

# Define the columns to log transform
columns_to_log = ['Guaranteed_Approved_Loan', 'ChargedOff_Amount', 'Gross_Amount_Disbursed']

# Create a new DataFrame for the Winsorized data
train_data_log = pd.DataFrame()

# Apply Winsorization to the selected columns and store the results in the new DataFrame

for column in columns_to_log:
   train_data_log[column + '_log'] = np.log(train_data[column].where(train_data[column] > 0, 1))

# Add the remaining columns from the original DataFrame to the new DataFrame

train_data_log = pd.concat([train_data_log, train_data.drop(columns_to_log, axis=1)], axis=1)



Visualization code - Box and Histplots

fig, ax = plt.subplots(1, 2, figsize=(20, 10))
sns.boxplot(x='Default', y='Guaranteed_Approved_Loan_win', palette='flare', data=train_data_win, ax=ax[0])
sns.histplot(train_data_win, x='Guaranteed_Approved_Loan_win', hue='Default', multiple='stack', 
palette='flare', edgecolor='.3', linewidth=.5, ax=ax[1])
ax[1].set(xlabel='Guaranteed_Approved_Loan_win')
ax[0].set(title='Winsorized', ylabel='Guaranteed_Approved_Loan_win')
ax[1].set(title='Winsorized', ylabel='Count')
fig.suptitle('Loan Approval and Default: Analysis of Winsorized Loan Amount', fontsize=16)
plt.show()

fig, ax = plt.subplots(1, 2, figsize=(20, 10))
sns.boxplot(x='Default', y='Guaranteed_Approved_Loan_log', palette='flare', data=train_data_log, ax=ax[0])
sns.histplot(train_data_log, x='Guaranteed_Approved_Loan_log', hue='Default', multiple='stack', 
palette='flare', edgecolor='.3', linewidth=.5, ax=ax[1])
ax[1].set(xlabel='Guaranteed_Approved_Loan_log')
ax[0].set(title='Log Transformed', ylabel='Guaranteed_Approved_Loan_log')
ax[1].set(title='Log Transformed', ylabel='Count')
fig.suptitle('Loan Approval and Default: Analysis of Log Transformed Loan Amount', fontsize=16)
plt.show()



Observations

Winsorized data:
● The distribution has shifted from right skew to non-normal distribution that 

reflects the transforms done on the bottom and top 20% of the data.
● The box plots have shifted their main body to a more central location and 

encompass a wide range
● There are fewer 'outliers' but they will remain as relevant data

Log transformed data:
● The distribution has shifted from right skew to a more normal distribution.
● The box plots have shifted their main body to a more central location
● There are fewer 'outliers' but they will remain as relevant data

It remains to be seen how winsorization and log transforms impact machine 
learning performance. This will be assess in another project.



‘Guaranteed_Approved_Loan’



Distribution
Impact of normalization (log transformation) on ‘Guaranteed_Approved_Loan’ variable

none winsorized logged



Box Plot
Impact of normalization (log transformation) on ‘Guaranteed_Approved_Loan’ variable

none winsorized logged



‘Gross_Amount_Disbursed’



Distribution
Impact of normalization (log transformation) on ‘Gross_Amount_Disbursed’ variable

none winsorized logged



Box Plot
Impact of normalization (log transformation) on ‘Gross_Amount_Disbursed’ variable

none winsorized logged



‘ChargedOff_Amount’



Distribution
Impact of normalization (log transformation) on ‘ChargedOff_Amount’ variable

none winsorized logged



Box Plot
Impact of normalization (log transformation) on ‘ChargedOff_Amount’ variable

none winsorized logged


