
Capstone Project
Deep Learning Methods for 
Facial Emotion Recognition

Monica Palacios Boyce, Ph.D.

Transfer Learning Optimization

Link to original capstone presentation

https://github.com/MPBDS2022/Data-Science/blob/main/capstone/MPB_capstone_presentation.pdf


These slides include the original presentation in the appendix 

Link to original capstone presentation
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Transfer Learning is a large topic

Zhuang, F., et al (2020) A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1) 43-76. link

https://ieeexplore.ieee.org/document/9134370


Recognizing accurate emotions in facial images can provide a deeper 
understanding of the user and situation in which the image was obtained.

Convolutional Neural Network models (CNNs) have been developed to process 
image data to learn higher order patterns (features) that can yield predictions of 
value on new images. 

In the first version of this capstone project, the use of transfer learning models 
as an alternative to the custom CNN model did not yield improved performance.

This current project aims to explore the proper design and use of these 
pre-trained CNN models on the FER 2013 dataset.

Problem Definition



Three pre-trained CNN models are evaluated:

● VGG16
● ResNet101
● EfficientNet B2

Part 1: Instead of using a single pre-trained layer from selected CNNs (as 
in the original capstone project), the entire frozen feature - extraction 
layers (the convolutional blocks) of the CNN models are trained on the 
FER 2013. 

Part 2: The feature - extraction layers (the convolutional blocks) of the 
models are UNFROZEN and then trained on the FER 2013. 



69.5%

93%

68.8%
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30.5%
25%

% indicates prediction accuracy on test data

As seen in the chart below, the three transfer learning models significantly underperformed in comparison to the less complex CNN 
models built during the capstone project.

Previous Transfer Learning Performance
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% indicates prediction accuracy on test data

79% 80%
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Changes in the handling of the pre-trained models had a positive impact on model performance for the VGG16 and ResNet101 
models. The EfficientNet B2 model continues to suffer from vanishing and exploding gradient problems. 

Improved Transfer Learning Performance

*



Model Training Accuracy Validation Accuracy Testing Accuracy

Frozen VGG16 + new FC 65.8% (0.6583) 62% (0.6205) 62.5% (0.6250)

UN-frozen VGG16  + new FC 64% (0.6367) 78% (0.7758) 79% (0.7891)

Frozen ResNet101 model + new FC 50% (0.4959) 33.5% (0.3351) 44% (0.4375)

UN-frozen ResNet101 model  + new FC 92.4% (0.9240) 77% (0.7655) 80% (0.7969)

Frozen EfficientNet B2 model + new FC 26% (0.2621) 24.4% (0.2443) 25% (0.25)

UN-frozen EfficientNet B2 model  + new FC 77.4% (0.7742) 25% (0.2489) 28% (0.2812)

Final custom CNN Model - RGB 92.4% (0.9243) 93.6% (0.9356) 93.3% (0.9331)

FC = fully connected layer

Summary of NEW findings - data table



VGG16
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16 layers of VGG16

1.Convolution using 64 filters
2.Convolution using 64 filters + Max pooling
3.Convolution using 128 filters
4. Convolution using 128 filters + Max pooling
5. Convolution using 256 filters
6. Convolution using 256 filters
7. Convolution using 256 filters + Max pooling
8. Convolution using 512 filters
9. Convolution using 512 filters
10. Convolution using 512 filters+Max pooling
11. Convolution using 512 filters
12. Convolution using 512 filters
13. Convolution using 512 filters+Max pooling
14. Fully connected with 4096 nodes
15. Fully connected with 4096 nodes
16. Output layer with Softmax activation with 1000 
nodes.

VGG16 Architecture



Model Training Accuracy Validation Accuracy Testing Accuracy

Final layer of VGG16 + new FC 53.8% 52% 51%

Frozen VGG16 + new FC 65.8% 62% 62.5%

UN-frozen VGG16  + new FC 64% 78% 79%
FC = fully connected layer

FROZEN UN-FROZENFinal Layer VGG
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The FROZEN VGG16 (using all of the pre-trained feature-extraction 
layers with unchanging weights) provided a modest improvement 
over the attenuated VGG16 model discussed in the original 
capstone project.

The UNFROZEN VGG16 (using all of the feature-extraction layers 
with new weights trained on the FER 2013 dataset) provided a 
significant improvement in predictive performance (79% vs 51%)

Key Findings - VGG16



ResNet101
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ResNet101 Architecture



Model Training Accuracy Validation Accuracy Testing Accuracy

Final layer of Resnet + new FC 30.6% 33.4% 30.5%

Frozen ResNet101 model + new FC 50% 33.5% 44%

UN-frozen ResNet101 model  + new FC 92.4% 77% 80%

FROZEN UN-FROZEN

FC = fully connected layer

Final Layer resnet
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The FROZEN ResNet101 (using all of the pre-trained 
feature-extraction layers with unchanging weights) provided a 
modest improvement over the attenuated resnet model in the 
original capstone project.

The UNFROZEN ResNet101 (using all of the feature-extraction layers 
with new weights trained on the FER 2013 dataset) provided a 
significant improvement in predictive performance (80% vs 30.5%)

Key Findings - ResNet101



EfficientNet B2
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EfficientNet B2 Architecture



Model Training Accuracy Validation Accuracy Testing Accuracy

Final layer of EfficientNet + new FC 26.3% 24.4% 25%

Frozen EfficientNet B2 model + new FC 26% 24.4% 25%

UN-frozen EfficientNet B2 model  + new FC 77.4% 25% 28%

UN-FROZENFROZEN

FC = fully connected layer

Final Layer Effnet
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The FROZEN EfficientNet B2 experienced chaotic gyrations in performance called the Vanishing 
Gradient Problem. There is an array of possible reasons for this issue, initial weights being one of 
them.

Recent work by Yilmaz and Poli (Neural Networks, 2022) suggest that optimizing initial weights can be 
an effective antidote. They claim “deep MLPs using sigmoid activation functions can be effectively 
trained using the standard back-propagation algorithm without experiencing the vanishing gradient 
problem.”

They suggest setting the mean initial weights to max(−1, -8 / number_of_neurons_in_layer).

The UNFROZEN EfficientNet B2 experienced significant issues during training.  Running this model on 
the training dataset resulted in an exploding gradient problem, often caused by poorly chosen initial 
weights.

Resolving these issues will remain a project for a future date.

Yilmaz, A., & Poli, R. (2022) Successfully and efficiently training deep multi-layer perceptrons with logistic activation function simply requires initializing the 
weights with an appropriate negative mean. Neural Networks, 153: 87-103. link

Key Findings - EfficientNet B2

https://www.sciencedirect.com/science/article/abs/pii/S0893608022002040?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0893608022002040?via%3Dihub
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Both the VGG16 and ResNet101 models benefited from the use of the entire 
body of feature-extraction layers.

VGG16 and ResNet101 model architecture performed even better when 
pre-trained weights were not used and then trained on the FER2013 dataset. 
Results approached that of the final CNN model discussed in the original 
capstone project (link).

Much more work needs to be done on the EfficientNet B2 model to resolve the 
vanishing and exploding gradient dysfunction seen in this project.

Conclusions

https://github.com/MPBDS2022/Data-Science/blob/main/capstone/MPB_capstone_presentation.pdf
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Optimize the EfficientNet B2 model by applying the use of mean initial weights 
as per Yilmaz & Poli (link)

Explore the use of Liquid CfC (closed-form Continuous-time) neural network 
models for “out-of-distribution generalization” that allows the use of pretrained 
models, as in transfer learning, but without the need for additional training in the 
new environment/data-field. 

Reference: Hasani, R. et al. (2022) Closed-form continuous-time neural 
     networks. Nat Mach Intell 

Future Work & Learning Topics

https://www.sciencedirect.com/science/article/abs/pii/S0893608022002040?via%3Dihub
https://doi.org/10.1038/s42256-022-00556-7
https://doi.org/10.1038/s42256-022-00556-7
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Objective: Construct a best-fit Convolutional Neural Network (CNN) model that accurately performs 
multi-class classification for facial emotion recognition. 

Must accurately detect four specific emotions in images of people, including: ‘happy’, ‘sad’, ‘neutral’, and 
‘surprise’ from the FER 2013 dataset.

Six test CNN models were designed, trained, validated, tuned, optimized, and evaluated.

Three of these test models included the use of transfer learning.
VGG16
ResNet V2
EfficientNet

A range of hyperparameters were assessed for positive impact on model performance.

A complex CNN was designed that was able to classify the correct emotion in novel images with 
approximately 93% accuracy and generalized well.

Key Takeaways



Recognizing accurate emotions in facial images can provide a deeper 
understanding of the user and situation in which the image was obtained.

Convolutional Neural Network models (CNNs) have been developed to process 
image data to learn higher order patterns (features) that can yield predictions of 
value on new images. 

Challenges include data quality issues, dataset imbalances due to demographic 
biases, and the need to train on very large datasets to yield sufficiently accurate 
performance.

Vast amounts of image data is continuously being captured. Many of these 
images are unlabeled and would require far more people to encode them than 
are available or feasible.

Problem Definition



5 Convolutional Blocks

Convolutional Layer

Batch Normalization

Leaky ReLU

Max Pooling

1

Flatten1
2 Fully Connected Layers1

1 Fully Connected Output Layer1

Batch Normalization

Dropout

Link to detailed model architecture diagram in appendix

Proposed Solution Approach
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Key Findings & Insights

Tuning focused on data augmentation, optimizers and output layer activation. 

Models that had fewer dropout layers performed better.

To effectively build higher order features (object filters), data density needs to 
remain intact during the feature extraction phase (convolutional layers)

Having dropout layers in the classification (fully connected) blocks did not 
degrade performance.

Data augmentation strategies did not yield improved performance.

The final model has a 93% testing accuracy and good generalized performance.
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Comparison of Performance Across Six Models in this project

Link to data table in appendix

69.5%

93%

68.8%

51%

30.5%
25%
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Final model performance on training and validation data

Illustrates “generalization” of 
performance over the duration of 
model training. 

Training (blue line) and 
validation (orange line) accuracy 
follow very similar paths = 
generalization is sufficient. 
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Recommendations

Explore recent advances including, dual-channel CNN architecture that first identifies a region 
of interest (ROI) and then applies higher resolution feature extraction to the “pre-qualified” 
ROIs.

Further optimize candidate model to improve informative feature extraction by training on 
larger datasets with higher label fidelity and demographic diversity. 

Potential benefits:
Higher emotion recognition accuracy across a more diverse demographic spectrum
Any product using this optimized model would be competitive in global markets 

Revisit the use of transfer learning to take advantage of the feature extraction layers of 
pre-trained CNN models, which only continue to grow ever more powerful.
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Next Steps

Further optimization using larger image datasets, such as:

ImageNet (>14 million annotated images)
CelebA (>202,000 annotated images)
FFHQ (Flickr-Faces-HQ, 70,000 high resolution diverse image set)

Mitigate low training performance issues by:
 

Increasing the size of the dataset
Increasing the accuracy of dataset labeling
Correction of bias by balancing demographic factors (equal 
representation of genders, ages, and racial phenotypes)

Mitigate low training performance issues by:

Further optimization using larger image datasets, such as:
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Ethical risks regarding privacy and 
ownership issues will require an open 
societal level discourse that should be 
considered a necessary component of any 
development plan.

Risks

Balancing computational costs required 
to train development models on very 
large datasets against potential benefits.

Challenges

A sampling of business use-cases for FER:

   Capturing metrics of student engagement in online education
   Psychological analysis of job applicants by human resource groups
   during hiring
   Optimizing personalized learning milieu through the analysis of not  
   only visual facial features but EEG data as a neurological
   emotion-ground-truth reference. 

Opportunities
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Appendix
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Model Training Accuracy Validation Accuracy Testing Accuracy

Model 1 65.4% 66.1% 69.5%

Model 2 73.5% 69.4% 68.8%

vggmodel 53.8% 52.1% 51%

resnetmodel 30.6% 33.4% 30.5%

efficientmodel 26.3% 24.4% 25%

final model (rgb) 92.4% 93.6% 93.3%

Comparison of Performance Across Six Models in this project
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Convolutional layer=

= Batch Normalization layer

= LeakyReLU layer

= Max Pooling layer

= Flatten layer

= Dropout layer

= Fully Connected (Dense) layer

= Fully Connected (Dense) OUTPUT  layer
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Link back to main slide
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Incidence of prediction errors by the 
model on 128 test images, 32 in 
each class.

Observation: Those boxes showing 
an error are associated with the 
‘neutral’ emotion.

Insight: This illustrates the difficulty 
of classifying an “emotion” from a 
neutral face.

Which emotions are misclassified by the model?
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Final Model - RGB Final Model - grayscale

Comparing ‘rgb’ to ‘grayscale’ final model design

Improved Performance
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Model 2
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16 layers of VGG16

1.Convolution using 64 filters
2.Convolution using 64 filters + Max pooling
3.Convolution using 128 filters
4. Convolution using 128 filters + Max pooling
5. Convolution using 256 filters
6. Convolution using 256 filters
7. Convolution using 256 filters + Max pooling
8. Convolution using 512 filters
9. Convolution using 512 filters
10. Convolution using 512 filters+Max pooling
11. Convolution using 512 filters
12. Convolution using 512 filters
13. Convolution using 512 filters+Max pooling
14. Fully connected with 4096 nodes
15. Fully connected with 4096 nodes
16. Output layer with Softmax activation with 1000 
nodes.

VGG16
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ResNet V2
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EfficientNet


